COMPASS: a tool for comparison of multiple protein alignments with assessment of statistical significance.

نویسندگان

  • Ruslan Sadreyev
  • Nick Grishin
چکیده

We present a novel method for the comparison of multiple protein alignments with assessment of statistical significance (COMPASS). The method derives numerical profiles from alignments, constructs optimal local profile-profile alignments and analytically estimates E-values for the detected similarities. The scoring system and E-value calculation are based on a generalization of the PSI-BLAST approach to profile-sequence comparison, which is adapted for the profile-profile case. Tested along with existing methods for profile-sequence (PSI-BLAST) and profile-profile (prof_sim) comparison, COMPASS shows increased abilities for sensitive and selective detection of remote sequence similarities, as well as improved quality of local alignments. The method allows prediction of relationships between protein families in the PFAM database beyond the range of conventional methods. Two predicted relations with high significance are similarities between various Rossmann-type folds and between various helix-turn-helix-containing families. The potential value of COMPASS for structure/function predictions is illustrated by the detection of an intricate homology between the DNA-binding domain of the CTF/NFI family and the MH1 domain of the Smad family.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Profile-profile comparisons by COMPASS predict intricate homologies between protein families.

Recently we proposed a novel method of alignment-alignment comparison, COMPASS (the tool for COmparison of Multiple Protein Alignments with Assessment of Statistical Significance). Here we present several examples of the relations between PFAM protein families that were detected by COMPASS and that lead to the predictions of presently unresolved protein structures. We discuss relatively straigh...

متن کامل

COACH: profile-profile alignment of protein families using hidden Markov models

MOTIVATION Alignments of two multiple-sequence alignments, or statistical models of such alignments (profiles), have important applications in computational biology. The increased amount of information in a profile versus a single sequence can lead to more accurate alignments and more sensitive homolog detection in database searches. Several profile-profile alignment methods have been proposed ...

متن کامل

COMPASS server for remote homology inference

COMPASS is a method for homology detection and local alignment construction based on the comparison of multiple sequence alignments (MSAs). The method derives numerical profiles from given MSAs, constructs local profile-profile alignments and analytically estimates E-values for the detected similarities. Until now, COMPASS was only available for download and local installation. Here, we present...

متن کامل

Quality of alignment comparison by COMPASS improves with inclusion of diverse confident homologs

MOTIVATION Adding more distant homologs to a multiple alignment and thus increasing its diversity may eventually deteriorate the numerical profile constructed from this alignment. Here, we addressed the question whether such a diversity limit can be reached in the alignments of confident homologs found by PSI-BLAST, and we analyzed the dependence of the quality of the profile-profile comparison...

متن کامل

Accurate statistical model of comparison between multiple sequence alignments

Comparison of multiple protein sequence alignments (MSA) reveals unexpected evolutionary relations between protein families and leads to exciting predictions of spatial structure and function. The power of MSA comparison critically depends on the quality of statistical model used to rank the similarities found in a database search, so that biologically relevant relationships are discriminated f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 326 1  شماره 

صفحات  -

تاریخ انتشار 2003